Algebraic methods for chromatic polynomials
نویسندگان
چکیده
The chromatic polynomials of certain families of graphs can be calculai ed by a transfer matrix method. The transfer matrix commutes with an action of the symmetric group on the colours. Using représentation theory, it is shown that the matrix is équivalent to a block-diagonal matrix. The multiplicities and the sizes of the blocks are obtained. Using a repeated inclusion-exclusion argument the entries of the blocks can be calculated. In particular, from one of the inclusion-exclusion arguments it follows that the transfer matrix can be written as a linear combination of operators which, in certain cases, form an algebra. The eigenvalues of the blocks can be inferred from this structure. The form of the chromatic polynomials permits the use of a theorem by Beraha, Kahane and Weiss to determine the limiting behaviour of the roots. The theorem says that, apart from some isolated points, the roots approach certain curves in the complex piane. Some improvements have been made in the methods of calculating these curves. Many examples are discussed in détail. In particular the chromatic polynomials of the family of the so-called generalized dodecahedra and four similar families of cubic graphs are obtained, and the limiting behaviour of their roots is discussed.
منابع مشابه
Chromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs
In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...
متن کاملChromatic polynomials of some nanostars
Let G be a simple graph and (G,) denotes the number of proper vertex colourings of G with at most colours, which is for a fixed graph G , a polynomial in , which is called the chromatic polynomial of G . Using the chromatic polynomial of some specific graphs, we obtain the chromatic polynomials of some nanostars.
متن کاملAlgebraic invariants arising from the chromatic polynomials of theta graphs
This paper investigates some algebraic properties of the chromatic polynomials of theta graphs, i.e. graphs which have three internally disjoint paths sharing the same two distinct end vertices. We give a complete description of the Galois group, discriminant and ramification indices for the chromatic polynomials of theta graphs with three consecutive path lengths. We then do the same for theta...
متن کاملThe Chromatic Polynomials and its Algebraic Properties
This paper studies various results on chromatic polynomials of graphs. We obtain results on the roots of chromatic polynomials of planar graphs. The main results are chromatic polynomial of a graph is polynomial in integer and the leading coefficient of chromatic polynomial of a graph of order n and size m is one, whose coefficient alternate in sign. Mathematics subject classification 2000: 05C...
متن کاملCertificates of Factorisation for Chromatic Polynomials
The chromatic polynomial gives the number of proper λ-colourings of a graph G. This paper considers factorisation of the chromatic polynomial as a first step in an algebraic study of the roots of this polynomial. The chromatic polynomial of a graph is said to have a chromatic factorisation if P (G,λ) = P (H1, λ)P (H2, λ)/P (Kr , λ) for some graphs H1 and H2 and clique Kr. It is known that the c...
متن کاملBernoulli collocation method with residual correction for solving integral-algebraic equations
The principal aim of this paper is to serve the numerical solution of an integral-algebraic equation (IAE) by using the Bernoulli polynomials and the residual correction method. After implementation of our scheme, the main problem would be transformed into a system of algebraic equations such that its solutions are the unknown Bernoulli coefficients. This method gives an analytic solution when ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 25 شماره
صفحات -
تاریخ انتشار 2004